

Consider the differential equation: $\frac{d^2y}{dx^2} = -4y$

Develop "recursion relations" relating (1) a2 to a0, (2) a3 to a1, (3) a4 to a2

One of the wavefunctions of the Harmonic Oscillator is: 2.

$$\psi = A_1 x e^{-\alpha x^2/2}$$
 $\alpha = \frac{\mu \omega}{\hbar}$ $\omega = \sqrt{\frac{k}{\mu}}$

- (a) Calculate the normalization constant, A_1 (in terms of α)
- (b) Determine $\langle x \rangle$ (in terms of α)
- (c) Determine $\langle x^2 \rangle$ (in terms of α)
- (d) Determine $\langle p \rangle$ (in terms of α)
- (e) Determine $\langle p^2 \rangle$ (in terms of α)
- (f) Determine $\langle T \rangle$, average kinetic energy (in terms of ω)
- (g) Determine <V>, average potential energy (in terms of ω)
- Consider a two dimensional Harmonic Oscillator for which ky =9·kx. Determine the energies (in terms of ω_x) and degeneracies of the first 7 energy levels for this oscillator. 3.
- Consider the diatomic molecule, carbon monoxide, ¹²C≡¹⁶O, which has a fundamental 4. vibrational frequency of 2170 cm⁻¹.
 - (a) Determine the CO vibrational force constant, in N/m.
 - (b) Determine the vibrational Zero-Point Energy, Eo, and energy level spaces, ΔE , both in kJ/mol.
- The ³⁵Cl₂ force constant is 320 N/m. Calculate the fundamental vibrational frequency of 5. 35Cl₂, in cm⁻¹.
- The 4 vibrational frequencies of CO₂ are: 2349 cm⁻¹, 1334 cm⁻¹, 667 cm⁻¹, 667 cm⁻¹. 6.
 - (a) Calculate the Zero-Point vibrational energy, i.e. E(0,0,0,0) in (1) cm⁻¹ (i.e. E/hc), (2) J, (3) kJ/mol.
 - (b) Calculate the energy required to raise the vibrational state to (0, 2,1,0) in (1) cm⁻¹ (i.e. E/hc), (2) J, (3) kJ/mol.

- (a) Calculate the I₂ force constant, k, in N/m.
- (b) Calculate the ratio of intensities of the first "hot" band (n=1 \rightarrow n=2) to the fundamental band (n=0 \rightarrow n=1) at 300 °C.
- 8. The Thermodynamic Dissociation Energy of H³⁵Cl is D₀ = 428 kJ/mol, and the fundamental vibrational frequency is 2990 cm⁻¹. Calculate the Spectroscopic Dissociation Energy of H³⁵Cl, D_e.
- 9. A particle in a box of length a has the following potential energy:

$$V(x) \rightarrow \infty$$
 $x < 0$
 $V(x) = B$ $0 \le x \le a/2$
 $V(x) = 2B$ $a/2 \le x \le a$
 $V(x) \rightarrow \infty$ $x > a$

Use first-order perturbation theory to determine the ground state energy of the particle in this box. Use $\psi_1 = A\sin(\pi x/a)$ where $A=(2/a)^{1/2}$ and $E_1 = h^2/8ma^2$ as the unperturbed ground state wavefunction and energy.

10. Use first-order perturbation theory to determine the ground state energy of the quartic oscillator, for which:

$$H = -\frac{\hbar^2}{2\mu} \frac{d^2}{dx^2} + \gamma x^4$$

Use the Harmonic Oscillator Hamiltonian as the unperturbed Hamiltonian:

HO Hamiltonian:
$$H = -\frac{\hbar^2}{2\mu} \frac{d^2}{dx^2} + \frac{1}{2}kx^2$$

Use
$$\psi_0 = Ae^{-\alpha x^2/2}$$
 where $A = \left(\frac{\alpha}{\pi}\right)^{1/4}$, $\alpha^2 = \frac{k\mu}{\hbar^2}$ and $E_0 = \frac{1}{2}\hbar\omega$ and

as the unperturbed ground state wavefunction and energy

Your answer should be in terms of k, μ , \hbar , ω , and γ

- 11. The Fundamental and First Overtone vibrational frequencies of HCl are 2885 cm⁻¹ and 5664 cm⁻¹. Calculate the harmonic frequency (\widetilde{v}) and the anharmonicity constant (x_e) .
- 12. The symmetric C-Br stretching vibration of CBr₄ has a frequency of 270 cm⁻¹. Calculate the contribution of this vibration to the enthalpy, heat capacity (constant pressure), entropy and Gibbs energy of two (2) moles of CBr₄ at 800 °C.

13. Three of the fundamental vibrational modes (CH bending) in methylenecyclopropene (C2v) are:

$$v_1(a_2) = 860 \text{ cm}^{-1}$$

$$v_2(b_1) = 1270 \text{ cm}^{-1}$$

$$v_3(b_2) = 740 \text{ cm}^{-1}$$

- OUL
- (a) Determine whether each fundamental mode is active or inactive in the IR and Raman Spectra.
- (b) Determine whether each combination mode below is active or inactive in the IR and Raman Spectra.
- (i) $v_1 + v_3$
- (ii) v2 v3

Gymmos vy

C _{2V}	Е	C ₂	σ _V (xz)	$\sigma_{V}(yz)$		
A ₁	1	1	1	1	Z	x^2, y^2, z^2
A ₂	1	1	-1	-1	Rz	ху
B ₁	1	-1	1	-1	x, R _y	XZ
B ₂	1	-1	-1	1	y, R _x	yz

DATA

$$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$$

$$h = 6.05 \times 10^{-34} \text{ J} \cdot \text{s}$$

 $h = h/2\pi = 1.05 \times 10^{-34} \text{ J} \cdot \text{s}$

$$c = 3.00 \times 10^8 \text{ m/s} = 3.00 \times 10^{10} \text{ cm/s}$$

$$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$$

$$k = 1.38 \times 10^{-23} \text{ J/K}$$

$$R = 8.31 \text{ J/mol-K}$$

$$R = 8.31 \text{ Pa-m}^3/\text{mol-K}$$

$$R = 8.31 \text{ Fa-m} / \text{mor r}$$

 $m_e = 9.11 \times 10^{-31} \text{ kg (electron mass)}$

$$1 J = 1 kg \cdot m^2/s^2$$
$$1 Å = 10^{-10} m$$

$$k \cdot N_A = R$$

$$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$$

1 atm. =
$$1.013 \times 10^5$$
 Pa
1 eV = 1.60×10^{-19} J

$$1 \text{ eV} = 1.60 \text{x} 10^{-19} \text{ J}$$

$$\int_0^\infty e^{-\beta x^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{\beta}}$$

$$\int_0^\infty x e^{-\beta x^2} dx = \frac{1}{2\beta}$$

$$\int_0^\infty x^2 e^{-\beta x^2} dx = \frac{1}{4\beta} \sqrt{\frac{\pi}{\beta}} \qquad \int_0^\infty x^3 e^{-\beta x^2} dx = \frac{1}{2\beta^2}$$

$$\int_0^\infty x^3 e^{-\beta x^2} dx = \frac{1}{2\beta^2}$$

$$\int_0^\infty x^4 e^{-\beta x^2} dx = \frac{3}{8\beta^2} \sqrt{\frac{\pi}{\beta}}$$

$$\int_0^\infty x^4 e^{-\beta x^2} dx = \frac{3}{8\beta^2} \sqrt{\frac{\pi}{\beta}} \qquad \int \sin^2(\alpha x) dx = \frac{1}{2} x - \frac{1}{4\alpha} \sin(2\alpha x)$$